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ABSTRACT 

We discuss the deep Euclidean behavior of Green’s functions 

in models in which symmetries are broken spontaneously or by “soft” 

operators. Our proof that the Green’s functions approach their 

symmetric values in the deep Euclidean region uses the Callan- 

Symanzik equation in a way which avoids relying on order by order 

power counting for the scalar tadpole insertions. The vacuum 

expectation value of the scalar field appears in the Callan-Symanzik 

equation as an additional coupling constant; the solution of the 

equation introduces a momentum dependent effective vacuum expectation 

value. We discuss theories with or without gauge invariance of the 

second kind. 
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I. INTRODUCTION 

The revival of interest in the renormalization group, particularly 

in the modern form of the Callan-Symanzik equations, 
1 

has generated a 

great deal of study of the asymptotic behavior of field theories at 

large spacelike momenta. An important physical motivation for 

investigating this apparently unphysical limit is the hope of understanding 

the behavior of weak and electromagnetic interaction of hadrons when 

the corresponding currents or gauge mesons are far off-shell. These 

studies probe possible field theory models of hadronic matter as well as 

high energy and higher-order effects of non-strong interactions. 

The model under investigation involves some internal symmetry 

group and computations are carried out with the symmetry preserved. 

In the real world, however, many of these symmetries are broken and 

one wonders whether this implies any modification of the asymptotic 

behavior deduced in the symmetric limit. If the symmetry breaking 

term is sufficiently “soft”, one expects from power counting arguments 

that it will have negligible effect in the deep Euclidean region. 

In this paper, we confirm this effect when the symmetry breaking 

arises from the non-vanishing vacuum expectation value of a scalar 

field. Such an effect may arise either from an explicit term linear 

in the scalar fields in the Lagrangian density or from spontaneous 

breakdown. Our proof that the Green’s functions approach their 

symmetric values in the deep Euclidean region uses the Callan-Symanzik 
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(C-S) equations in a way which avoids relying on order by order power 

counting for the scalar tadpole insertions. This procedure is necessary 

in a spontaneously broken symmetry theory, since in this case the 

Green’s functions are in general not analytic in the vacuum expectation 

value of the scalar field. The vacuum expectation value of the scalar 

field appears in the C-S equations as an additional coupling constant; 

the solution of the equation introduces a momentum dependent effective 

vacuum expectation value (VEV). 

The symmetric point corresponding to zero VEV is a fixed point 

of the effective VEV. For theories without gauge particles, where 

a non-zero VEV implies a Goldstone boson, positivity properties lead 

to the conclusion that this fixed point is unique and ultra-violet stable. 

For gauge theories in a general renormalizable gauge, these positivity 

conditions are lacking and such an unequivocal conclusion is not avail- 

able. In this case we have calculated in the one loop approximation. 

To this order, we show that the theory approaches its symmetric limit 

for all choices of the gauge parameter if the effective gauge coupling is 

sufficiently small. This conclusion holds, therefore, when the theory 

is “asymptotically free. ,I2 We do not, however, consider the problems 

of maintaining asymptotic freedom when Higgs mesons are added to a 

gauge theory. 

We prove our results by considering simple prototype Lagrangians. 

The generalizations to more complicated theories with additional couplings 
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constants seem straightforward. In the next section we discuss the 

scalar field model where spontaneous breakdown implies a Goldstone 

boson. In the third section, we consider a gauge theory with Higgs 

scalars added. Finally we offer some concluding remarks and ideas 

for extensions of this work. 

II. A MODEL WITH GLOBAL INVARIANCE 

As a prototype of a model with a Goldstone boson in the broken 

symmetry limit, we consider the field theory of a massive complex 

scalar field with a X0 1 e 1 4 interaction. The Callan-Symanzik equations 

for the renormalized irreducible proper vertex functions for a symmetric 

solution with vanishing vacuum expectation value of 4 can be written 

(The complex field o may be thought of as a two-dimensional real 

vector in an isospace, so that 6 = $J+ + i e2. The subscript i in pi 

includes the specification of the component in this isospace): 

[m2a 
8m2 

+p(X)+K - (n/2)v(X)lT(p11...,pn;m2,h) 

= ra(O;pl,. . . ,pn;m2, A) (1) 

where m2 and dare the physical mass and coupling constant defined by 

T(P, -p) 2 2 = (p2 - m2) 
P -m 

lxP1.P2’P3’P4) =-A 
sym. pt. 

The symmetric point is defined by pi. pj = m2/ 3 [ 4aij - 4 I . 
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The vertex functions on the right hand side of the equation have one 

zero-momentum external insertion of the mass operator 1 6 1 2 whose 

strength is normalized by the convention 

ram, p, -PI 
2 

P2 
2=-m =m 

The C-S equation for the generating functional of the vertex 

function will be useful and is constructed from 

urn) = X(1/n!) fi dxi @(xi) I? (x,. . . . ,xn;m2A) 
n i=l 

(2) 

Since the differential operator in (4) does not act on the momenta, 

the equation holds also in coordinate space. Using the functional analogue 

of 
d n Z ;iz Z = n Z n 

the desired equation can be written 

[m2a +p(A)& -y(x)/2 
&l-l2 I 

dxe)&lr(m) =r,(o;m) 
(3) 

ra(o, a,) is defined analogously to l?(Q). 

The n-point vertex function for a solution with non-vanishing 

vacuum expectation value of 6 , say < $>. = v, is given by the n-th 

functional derivative of I? evaluated at @ = v. In general, this is the 

solution for the theory with an external source of the scalar field 

J /= 0, or a linear term in 4 added to the original Lagrangian density. 

The possibility of Co>o k 0 for no source, J = 0, corresponds to 
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spontaneous breakdown. The values of the parameters for which this 

is possible can be determined from the superpotential. 
3 

The spontaneous 

breakdown condition 

6r 
60 

=J=O 

rp=v 

leads to a relation between v, m2,h In deriving the C-S equations for 
. 

v 1 0, however, we consider v, m ‘, Xas independent parameters. 

Each set corresponds to some determinable value of J. 

To obtain the C-S equation for the vertex functions of the solution 

with Q = v, we write Q = Q + v and note that 

I 
6 dx Q(x) - 6 Q(x) r(a=Z+v)=[ d~&)&+v~~Ir 

/ 
(3) 

Then taking the n-th functional derivative of I? with respect to $ 

g = 0 in Eq. (2) gives the C-S equation for the broken symmetry 

[m2a 
a 

am2 
+ P(X) T$J - y(Xi$h +v7& )Ir(p,,..., pn.m2,xv) 

r, (0:~~~. . . ,pn,m2, A,V) (4) 

In order to admit the case of spontaneous breakdown of the symmetry, 

we must allow the possibility that m2< 0. 
4 

Equations (3 ) and (4 ) are 

not affected even in such cases. 

For nonexceptional momenta, the inhomogeneous term can be 

dropped in the deep Euclidean region by the usual power counting 

theorem of Weinberg. By ordinary dimensional counting, we can write 

the vertex function as 
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IT = ,3(4-n)’ ’ F” (s/m2, v/m,A, {uij } J (5) 

where s = - Zp2 
PiP 

i 
l, uij =a. 

S 

The deep Euclidean region is defined by s * a, uij fixed. In this limit 

the C-S equation reduces to 

(m2a a 
am2 

+Ph)K - [Y(X)/21 v$ (n/2)-y (A)}FLs =fj 
(6) 

Upon introducing the variables t = Pn(s/m2), x = v/m, Eq. (6) becomes 

[-$t-+p+A -(x/Z)(l+y)$I FL.=(n/2)yF& . (7) 

In this form v or x plays the role of a second coupling constant. 
5 

To solve, introduce the effective coupling constantsi (A, t), si(x, A, t) by 

ax - = P(X), at X(X,0) = A 

aTI 
at = -(x/2)[i +y(i,], x(x,A;O) =x 

(8) 

x has a fixed point at x = 0; the symmetric solution remains symmetric 

when the momenta are continued to the deep Euclidean region. Further - 

more, x = 0 is the only fixed point and is ultraviolet stable if 1 +$A)> 0. 

For a theory with a positive metric, it follows from the mllen-Lehmann 

representation for the scalar two-point function that y(A) > 0 and the 

necessary condition above obviously holds. That is, 

lim X(x,A,t) = 0 
t-r m 
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which implies that the vertex function approaches its symmetric 

value. To illustrate this more explicitly we note that Eq. (8) gives 

A (A, t) as the same function as in the symmetric solution, and that the 

solution of (8) is 

x(x,A,t) =exp y[+;‘)]dt’) (9) 

which shows that x - 0 faster than 4 I&. 

The asymptotic vertex function can be written 
t 

n FAS = <“(x9 l,{u}) exp I-n/Zj y F(A,t’)] dtll (10) 

0 

The form of gn is not determined from the homogeneous equation, 

but continuity demands that 5 “(X IO, w) corresponds to the symmetric 

solution. If A has an ultraviolet fixed point at A = X1, corresponding 

to a first order zero of p(A 1 ), the asymptotic solution becomes 

n 
FAS = i 

n -[t/A) Il+y(A,)) 

with 

x (s/m21 
-ny(Ai )/ 2 

Kn 

K =exp -112 i’ [y(Al) - v(AQ]dA’/P(A’) 

A 

(11) 

III. A MODEL WITH LOCAL GAUGE INVARIANCE 

To extend these ideas to spontaneously broken gauge theories, 
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we consider a theory of vector mesons and scalars invariant under 

local transformations of a gauge group G. The Lagrangian is 

~1/2[a~~-igT~~A~12-(m02/2j1012-(~O/4))914 

where (T”) ab is a real representation of the group G; T” = - (T”,t 

(We assume for simplicity that the representation contem of the scalars 

admits only one quartic coupling. ) 

In the symmetric limit we renormalize the scalar propagator by 

the convention 

lim A-‘(p2) = p2 - M2 + O[(P~+~J~)~] 
2 2 

P -p 

and 

lim Al*v(pi) = -gllV % + gauge dependent term 

P2-+P2 P 

and other renormalization parts at some Euclidean points characterized 

in terms of p2. The unrenormalized Green’s functions are independent 

of the value p2; this leads to the Gell-Mann-Low equation’ 

a [ p2 - 1 

ap2 
+P 

1 a 
g 

A+PA ah- 
ag 

(n,/ 2)~: - bsl 2)~ ‘, 

-2Y 
1 
v $knv’ns (ki,...,knvBpi, . . . . pns;m2,~2,g,AI = 0 

where n = number of external vector lines v 
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n 
S 

= number of external scalar lines 

pl = ag/aan p2 

13: =ar/a In p2 

Y; = azv/a Pn p2 

Y; = azs/a Pn p2 

and (Y = (Y /Z 0 v is the coefficient of the longitudinal term in the renormalized 

vector meson propagator. 

Externai scalar mass insertions gives the C-S equalion 

Lm2A+p2 & +$& 
am2 g ag - (nv/2)ya - (ns/2)y2 

V S 

-2y,2 &II- 
n,.n n ,n 

QAV s 
(13) 

where 

P2g = aglamn m2; 

; etc. 

Adding the two equations gives 

[m2~i- p2 a 

am2 
-fP 
av2 

g&+‘A& (nvl 2)yv - (ns/ 2)y 
s 

with 

and 

- LyYv&k 

nv, n 
S 

= rant ns 

Pg =P;+P2. 
g 

etc. 

(14) 

YV 
= (r2 A- -km’ +)ln Z, ; etc. 

a &2 am 
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At the one loop level we can regulate the theory by introducing an 

explicit ultraviolet cut -off A2. To this order, then, 

Yv = - aPn 2 /ah A2, etc. 
V 

[WetakeA- O(g2) so that expansion in g2- Ais equivalent to an 

expansion in the number of loops. 1 

When the scalar field has a nonvanishing vacuum expectation 

value v, the modified Callan-Symanzik equations are obtained exactly 

as in the preceding section. Equation (14) is altered by the addition 

of a term 

-(y,/ 2,v$v r 
nv’ ns 

to the left hand side. 

By dimensional power counting 

r 
nv’ ns 

(4-nv-ns)/2 n ,n 
‘S FV ‘(s/m2, p2/m2 ,x=v/m,g,A,uij) 

and the C-S equation in the deep Euclidean region becomes 

b~+pg~+pA~A -(x/2K1+ys)& 
a 

- ayva 

- (nv/2)yv - (n,/2)y,l F>ins = 0 (1 (45) 

with 

s = -2 p.2 - 2 ki2, t = Pn (s/m’) 1 
i i 

Introducing effective coupling constants, g, x, x, a as in Sec. II, 

the sufficient condition for asymptotic symmetry is 

lim y, @,X,Z,t)> -1 (16) 
t-m 
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Since the vector theoryin a general renormalizable gauge is 

realized in a Hilbert space of indefinite metric, we cannot appeal to the 

same positivity properties as before. Note, however, that the equations 

- - 
for g,x, L are independent of x and that y,, y, are functions of g, A, 

cy only. Therefore, the power behavior in s of the Green’s functions 

is the same for the symmetric solution. Only the coefficient function 

denoted by 5 in the previous section might be affected. (We assume 

that 5 has a finite limit as t -,m ). 

We have no general proof of the inequality of Eq. (16). However, 

we have studied the problem in the one loop expansion of pertubation 

theory. 

The one loop contribution to Zs is 

2 
zs = 1+ g x (-TpTP)~~(l+(Y)ln (m2/A2) + 0 (g4) 

16~~ f3 

and 
2 

YS 
=+ I: (-TBTB)aa(i+@)+O(g4) 

16n P 
(47) 

Note that (-TPTP) > 0 
aa ’ 

The effective gauge parameter is determined 

from 

a(Y - -= 
at -@ Yv(PL(Y) 

The one loop contribution to y, is 

2 2 

Y, = - g (1313 - (u) C2 (G) + g 2. Tr(-TaTn) 
16~’ 16?r2 3 

(18) 
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The first term comes from the vector meson (and ghost) loop contri- 

butions to the gauge boson vacuum polarization and the second term 

from the Higgs scalar loop. C2(G) is the quadratic Casimir operator 

of the adjoint representation. Tr (-TaTa) > 0 and its value depends on the 

group representation realized on the Higgs scalars. There are two gen- 

eral possibilities depending on the sign of 13 C,(G) - Tr(-ToTa). 

When this term is positive -(Y y 
V 

has the general shape shown in 

Fig. la. a = 0 is a fixed point but is ultraviolet instable. On the other 

hand, 

CUE = 2[13 C2(G) + Tr(TLyTU)I 
48x2 

is clearly an ultraviolet stable fixed point for cy > 0. For (Y < 0, a has 

a discontinuous behavior. i reaches - m at a particular finite value of t, 

jumps to + m , and then approaches al from above. That is, cut is an 

ultraviolet attractor for all (Y k 0. 

When there are enough Higgs scalars so that ai < 0, the shape of 

-o y iS as shown in Fig. Ib. In this case, (Y = 0 is an ultraviolet 
V 

attractor for all cy k cut. 

It follows that except for (Y = (Ye < 0, the asymptotic effective gauge 

parameter is positive semi-definite, i.e., 
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Hence, from (17) lim y, > 0, Pn x = 0 as shown in Sec. II, and the Green’s 
t -m 

functions approach their symmetric values in the asymptotic limit. 

In the exceptional case (Y = al <‘O, y, can be negative if al < -1. 

As long as g2 is sufficiently small, in particular, if the theory is 

asymptotically free, lim crl (g) will be absolutely less than 1, and we 
t-t m 

will have lim y, > -1. We have shown that this is a sufficient condition 
t -a 

for symmetric Green’s functions in the deep Euclidean region. 

IV. DISCUSSION 

The details of our derivations apply to the case of spontaneous 

symmetry breaking or to symmetry breaking due to a term in the 

Lagrangian density linear in the scalar fieldIs ). We expect, however, 

that whenever the symmetry breaking is sufficiently “soft”, it will have 

negligible effect in the deep Euclidean regime. It seems to us likely that 

the criteria for ” softness” is that the symmetry breaking be due to a gener- 

alized mass term of free field dimension less than four, in the langauge 

of K. Wilson. 
8 

In fact, S. Weinberg has recently treated fermion mass terms in a 

way related to the development here. 
9 

In his development, the mass 

plays the role of a coupling constant in the renormalization group 

equations ~ The effective mass tends to zero as s + m if the anomalous 

dimension of the mass operator exceeds minus one. 

A complete knowledge of which types of symmetry breaking becomes 
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negligible in the high momentum limit would be useful in devising experi- 

mental tests of the underlying symmetry of the theory, as well as in 

justifying the theoretical simplification of computing asymptotic behavior 

in a completely symmetric model. For example, asymptotic equality 

of Green’s functions of different weak and electromagnetic currents in 

the deep Euclidean region can lead to sum rules among the corresponding 

spectral functions. 



-16- 

REFERENCES 

NAL-Pub-74/32-THY 

1 
C. Callan, Phys. Rev. DA, 1521 (1970); K. Symanzik, Commun. Math. 

Phys. 18, 227 (1970). 

2 H.D. Politzer, Phys. Rev. Letters, 30, 1346 (1973); D. J. Gross and 

F. Wilczek, Phys. Rev. Letters 30, 1343 (1973); and Phys. Rev. E, 

3633 (1973). 

3 G. Jona-Lasimo, Nuovo Cimento 34, 1790 (1964). For recent develop- 

ments see, e.g., S. Coleman and E Weinberg, Phys. Rev. DL, 1888 

(1973); E. Abers and B. W. Lee, Phys. Reports s, 1 (1973), (see 

especially Sec. 16). 

4 See for example, B. W. Lee, Chiral Dynamics (Gordon and Breach, 

New York, 1972). 

5 
Our solution of the C-S equation follows the method for a one-coupling 

constant theory described by S. Coleman, Lectures at 1971 International 

Summer School of Physics, “Ettore Majorana” (unpublished). 

6 M. Gell-Mann and F.E. Low, Phys. Rev. 95, 1300 (1954). 

3 

‘While this manuscript was being prepared, there appeared an article 

discussing the gauge dependence of ultraviolet behavior in non-abelian 

theories or vector bosons and fermions which contains results on the 

asymptotic value of (Y anal gous to our. A. Hosoya and A. Sato, Phys. 

Letters 48B, 36 (1974). 



-17- 

8 
K. Wilson, Phys. Rev. 179, 1499 (1969). 

9 S. Weinberg, Phys. Rev. E, 3497 (1973). 

NAL-Pub-74/ 32-THY 



Fig. la 

Fig. lb 

-18- 

FIGURE CAPTIONS 
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-wyv vs. cr when 13C2(G) + TI-(‘~%~) > 0. 

-T vs* 
(Y when 13C2(G) f Tr(TaTa) < 0. 
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